emathグラフで2次関数の最大最小
これだけを書くのにすごく時間がかかったのでとりあえずメモ。解説は時間があるときに。
%------------------------------------------------------------------------ \item $a + 1 < 1$,すなわち $a < 0$ のとき\\ \unitlength=5mm \begin{zahyou*}(0,8)(0,6) % \def\Fx{0.15*(X-1)*(X-1)+1} %a % \def\Fx{0.2*(X-3)*(X-3)+1} %b % \def\Fx{0.4*(X-4)*(X-4)+1} %c % \def\Fx{0.2*(X-5)*(X-5)+1} %d % \def\Fx{0.15*(X-7)*(X-7)+1} %e \YGurafu(.2)(.05)\Fx\xmin{2} \YGurafu\Fx{2}{6} \YGurafu(.2)(.05)\Fx{6}\xmax \tenretu*{ % aA(2,1.15);aAx(2,0);aAy(0,1.15);aB(1,1);aBx(1,0);aBy(0,1);aC(6,4.75);aCx(6,0);aCy(0,4.75); % bA(2,1.2);bAx(2,0);bAy(0,1.2); bB(3,1);bBx(3,0);bBy(0,1);bC(6,2.8);bCx(6,0);bCy(0,2.8); % cA(2,2.6);cAx(2,0);cAy(0,2.6); cB(4,1);cBx(4,0);cBy(0,1);cC(6,2.6);cCx(6,0);cCy(0,2.6); % dA(2,2.8);dAx(2,0);dAy(0,2.8);dB(5,1);dBx(5,0);dBy(0,1);dC(6,1.2);dCx(6,0);dCy(0,1.2); % eA(2,4.75);eAx(2,0);eAy(0,4.75);eB(7,1);eBx(7,0);eBy(0,1);eC(6,1.15);eCx(6,0);eCy(0,1.15); Lt(2,\ymax);Lb(2,\ymin);Rt(6,\ymax);Rb(6,\ymin);Mt(4,\ymax);Mb(4,\ymin) } \Hasen{\Lt\Lb}\Hasen{\Rt\Rb} % \Hasen{\Mt\Mb} % \Put\aA[es]{$(,f())$}\Put\aB[sw]{$(,f())$}\Put\aC[e]{$(,f())$} % \Put\bA[w]{$(,f())$}\Put\bB[se]{$(,f())$}\Put\bC[e]{$(,f())$} % \Put\cA[w]{$(,f())$}\Put\cB[se]{$(,f())$}\Put\cC[e]{$(,f())$} % \Put\dA[w]{$(,f())$}\Put\dB[sw]{$(,f())$}\Put\dC[e]{$(,f())$} % \Put\eA[w]{$(,f())$}\Put\eB[se]{$(,f())$}\Put\eC[sw]{$(,f())$} % \Put\Lb[s]{$x=$}\Put\Rb[s]{$x=$} % \Put\Mb[s]{$x=$} % \kuromaru[2pt]{\aA}\kuromaru[2pt]{\aB}\kuromaru[2pt]{\aC} % \kuromaru[2pt]{\bA}\kuromaru[2pt]{\bB}\kuromaru[2pt]{\bC} % \kuromaru[2pt]{\cA}\kuromaru[2pt]{\cB}\kuromaru[2pt]{\cC} % \kuromaru[2pt]{\dA}\kuromaru[2pt]{\dB}\kuromaru[2pt]{\dC} % \kuromaru[2pt]{\eA}\kuromaru[2pt]{\eB}\kuromaru[2pt]{\eC} \end{zahyou*}\\[5mm] 図より \begin{jquote}(1zw) $M(a) = f(a)$\\ $ = a^2 - 2a + 2$ \end{jquote}